A Blog by Jonathan Low

 

Oct 16, 2020

Why Claims Of AI-Driven 'Bias-Free' Hiring Are Problematic

There are many kinds of bias. Some focus on gender or race. But others discriminate against employees or potential hires who may want better wages, working conditions or, especially in tech, may job hop. 

Social scientists have taken positions on both sides of the debate, from organizational psychologists designing personality screening algorithms to economists analyzing data on the use of technology to assess or intimidate job seekers or holders. To optimize outcomes, leaders must compare and evaluate decision-making processes, never becoming too reliant on a new technology - or claims about it - to supplant humans without careful examination of the risks and opportunities. JL

Karen Hao reports in MIT Technology Review:

Since the onset of the pandemic, a growing number of companies have turned to AI to assist with hiring. “Employee retention is a focus given the costs of high employee churn, 16% of each employee’s salary.” The systems involve face-scanning algorithms, games, questions, or other evaluations to determine candidates to interview. (But) beyond employment discrimination, big-data analysis is used to drive down wages. Machine-learning personality tests are used to screen out employees' flight risk. “Job hopping, or the threat of job hopping is one of the ways workers increase their income.” The (AI) built its assessment on personality screenings designed by organizational psychologists.

An AI hiring firm says it can predict job-hopping based on your interviews. The idea of “bias-free” hiring, already highly misleading, is being used by companies to shirk greater scrutiny for their tools’ labor issues beyond discrimination.

Since the onset of the pandemic, a growing number of companies have turned to AI to assist with their hiring.

The most common systems involve using face-scanning algorithms, games, questions, or other evaluations to help determine which candidates to interview.

While activists and scholars warn that these screening tools can perpetuate discrimination, the makers themselves argue that algorithmic hiring helps correct for human biases.

Algorithms can be tested and tweaked, whereas human biases are much harder to correct—or so the thinking goes.

In a December 2019 paper, researchers at Cornell reviewed the landscape of algorithmic screening companies to analyze their claims and practices. Of the 18 they identified with English-language websites, the majority marketed themselves as a fairer alternative to human-based hiring, suggesting that they were latching onto the heightened concern around these issues to tout their tools’ benefits and get more customers.

But discrimination isn’t the only concern with algorithmic hiring, and some scholars worry that marketing language that focuses on bias lets companies off the hook on other issues, such as workers’ rights. A new preprint from one of these firms now serves as an important reminder: “We should not let the attention that people have begun to pay to bias and discrimination issues actually crowd out the fact that there are a bunch of other issues,” says Solon Barocas, an assistant professor at Cornell University and principal researcher at Microsoft Research, who studies algorithmic fairness and accountability.

The firm in question is Australia-based PredictiveHire, founded in October 2013.


It offers a chatbot that asks candidates a series of open-ended questions. It then analyzes their responses to assess job-related personality traits like “drive,” “initiative,” and “resilience.”


According to the firm’s CEO, Barbara Hyman, its clients are employers that must manage large numbers of applications, such as those in retail, sales, call centers, and health care.

As the Cornell study found, it also actively uses promises of fairer hiring in its marketing language. On its home page, it boldly advertises: “Meet Phai. Your co-pilot in hiring. Making interviews SUPER FAST. INCLUSIVE, AT LAST. FINALLY, WITHOUT BIAS.”

As we’ve written before, the idea of “bias-free” algorithms is highly misleading. But PredictiveHire’s latest research is troubling for a different reason. It is focused on building a new machine-learning model that seeks to predict a candidate’s likelihood of job-hopping, the practice of changing jobs more frequently than an employer desires. The work follows the company’s recent peer-reviewed research that looked at how open-ended interview questions correlate with personality (in and of itself a highly contested practice).

Because organizational psychologists have already shown a link between personality and job-hopping, Hyman says, the company wanted to test whether they could use their existing data for the prediction. “Employee retention is a huge focus for many companies that we work with given the costs of high employee churn, estimated at 16% of the cost of each employee’s salary,” she adds.

The study used the free-text responses from 45,899 candidates who had used PredictiveHire’s chatbot.

Applicants had originally been asked five to seven open-ended questions and self-rating questions about their past experience and situational judgment.

These included questions meant to tease out traits that studies have previously shown to correlate strongly with job-hopping tendencies, such as being more open to experience, less practical, and less down to earth. The company researchers claim the model was able to predict job hopping with statistical significance. PredictiveHire’s website is already advertising this work as a “flight risk” assessment that is “coming soon.”

PredictiveHire’s new work is a prime example of what Nathan Newman argues is one of the biggest adverse impacts of big data on labor. Newman, an adjunct associate professor at the John Jay College of Criminal Justice, wrote in a 2017 law paper that beyond the concerns about employment discrimination, big-data analysis had also been used in myriad ways to drive down workers’ wages.

Machine-learning-based personality tests, for example, are increasingly being used in hiring to screen out potential employees who have a higher likelihood of agitating for increased wages or supporting unionization. Employers are increasingly monitoring employees’ emails, chats, and other data to assess which might leave and calculate the minimum pay increase needed to make them stay. And algorithmic management systems like Uber’s are decentralizing workers away from offices and digital convening spaces that allow them to coordinate with one another and collectively demand better treatment and pay.

None of these examples should be surprising, Newman argued. They are simply a modern manifestation of what employers have historically done to suppress wages by targeting and breaking up union activities. The use of personality assessments in hiring, which dates back to the 1930s in the US, in fact began as a mechanism to weed out people most likely to become labor organizers. The tests became particularly popular in the 1960s and ’70s once organizational psychologists had refined them to assess workers for their union sympathies.

In this context, PredictiveHire’s fight-risk assessment is just another example of this trend. “Job hopping, or the threat of job hopping,” points out Barocas, “is one of the main ways that workers are able to increase their income.” The company even built its assessment on personality screenings designed by organizational psychologists.

Barocas doesn’t necessarily advocate tossing out the tools altogether. He believes the goal of making hiring work better for everyone is a noble one and could be achieved if regulators mandate greater transparency. Currently none of them have received rigorous, peer-reviewed evaluation, he says. But if firms were more forthcoming about their practices and submitted their tools for such validation, it could help hold them accountable. It could also help scholars engage more readily with firms to study the tools’ impacts on both labor and discrimination.

“Despite all my own work for the past couple of years expressing concerns about this stuff,” he says, “I actually believe that a lot of these tools could significantly improve the current state of affairs.”

2 comments:

Clarkson Coleman said...

📁HAVE YOU LOST YOUR HARD EARNED FUNDS TO THE WRONG HANDS?
MEET THE PROFESSIONAL HACKERS FOR HIRE TODAY. 
⏱ 1min Read
Hiring a professional hacker has been one of the world's most technical valued navigating information.
Regarding:
•Recovery Of Lost Funds,
•Mobile Phone Hack.(Catching A Cheating Spouse).
•Credit Score Upgrade,
•Email Hack.
•Uber free Payment.
• Various HACKtivities via an encrypted mail at Leroysteckler@gmail.com
High prolific information and Priviledges comes rare as it has been understood that what people do not see, they will never know. One of the affirmative ability to convey a profitable information Systematically is the majoy factor to success Welcome to The GlobalKOS hacking agency where every request on hacking related issues are fixed within a short period of time. For more infomation and profound Hacking services,
Visit: leroysteckler@gmail.com.

efren said...

Do you need to hack into any, databaseserver spy on Facebook,Emails, Whatsapp, Viber, Snapchat, Instagram and many more.
I urge you to get in touch with the best people for the job, i have confirm the service when i need to spy on my spouse phone. They are good at Phone Cloning and Bitcoin/binary minning and any other hack job.
Thanks guys for the team work HACKINTECHNOLOGYATGMAILDOTCOM

+12132951376(WHATSAPP)

Post a Comment